1 Given that $x^{2}+x y+y^{2}=12$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.

2 The function $\mathrm{f}(x)$ is defined by $\mathrm{f}(x)=\sqrt{4-x^{2}}$ for $-2 \leqslant x \leqslant 2$.
(i) Show that the curve $y=\sqrt{4-x^{2}}$ is a semicircle of radius 2 , and explain why it is not the whole of this circle.

Fig. 9 shows a point $\mathrm{P}(a, b)$ on the semicircle. The tangent at P is shown.

Fig. 9
(ii) (A) Use the gradient of OP to find the gradient of the tangent at P in terms of a and b.
(B) Differentiate $\sqrt{4-x^{2}}$ and deduce the value of $\mathrm{f}^{\prime}(a)$.
(C) Show that your answers to parts (A) and (B) are equivalent.

The function $\mathrm{g}(x)$ is defined by $\mathrm{g}(x)=3 \mathrm{f}(x-2)$, for $0 \leqslant x \leqslant 4$.
(iii) Describe a sequence of two transformations that would map the curve $y=\mathrm{f}(x)$ onto the curve $y=g(x)$.

Hence sketch the curve $y=g(x)$.
(iv) Show that if $y=g(x)$ then $9 x^{2}+y^{2}=36 x$.

3 Fig. 6 shows the triangle OAP, where O is the origin and A is the point $(0,3)$. The point $\mathrm{P}(x, 0)$ moves on the positive x-axis. The point $\mathrm{Q}(0, y)$ moves between O and A in such a way that $\mathrm{AQ}+\mathrm{AP}=6$.

Fig. 6
(i) Write down the length AQ in terms of y. Hence find AP in terms of y, and show that

$$
\begin{equation*}
(y+3)^{2}=x^{2}+9 \tag{3}
\end{equation*}
$$

(ii) Use this result to show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x}{y+3}$.
(iii) When $x=4$ and $y=2, \frac{\mathrm{~d} x}{\mathrm{~d} t}=2$. Calculate $\frac{\mathrm{d} y}{\mathrm{~d} t}$ at this time.

4 A curve has equation $2 y^{2}+y=9 x^{2}+1$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y. Hence find the gradient of the curve at the point $\mathrm{A}(1,2)$.
(ii) Find the coordinates of the points on the curve at which $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$.

5 Given that $y=(1+6 x)^{\frac{1}{3}}$, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{y^{2}}$.

6 A curve is defined implicitly by the equation

$$
y^{3}=2 x y+x^{2} .
$$

(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2(x+y)}{3 y^{2}-2 x}$.
(ii) Hence write down $\frac{\mathrm{d} x}{\mathrm{~d} y}$ in terms of x and y.

